

Mathematics for Engineers II. lectures

Pál Burai

Laplace transform

This work was supported by the construction EFOP-3.4.3-16-2016-00021. The project was supported by the European Union, co-financed by the European Social Fund.

Laplace transform

Laplace transform is a possible tool for solving linear ODE with constant coefficients. The process consists three main steps:

- ① The given "hard" problem is transformed into a "simple" equation.
- ② This simple equation is solved by purely algebraic manipulations.
- ③ The solution of the simple equation is transformed back to obtain the solution of the given problem.

In this way the Laplace transformation reduces the problem of solving a differential equation to an algebraic problem.

Laplace transform

Definition

Let $f(t)$ be defined for $t \geq 0$ ($f(t)$ can be both real or complex). Then the **Laplace transform of f** is defined by the following equation (if the integral is convergent)

$$\mathcal{L}[f(t)](s) = \int_0^{\infty} f(t)e^{-st} dt.$$

If F is the Laplace transform of f , then f is called the **inverse Laplace transform of F** and write $\mathcal{L}^{-1}[F(s)]$.

In practice, we use Laplace transformation tables for the calculation of inverse transform.

Laplace transform, Example, Exercises

Let $f(t) = 1$. Then

$$\mathcal{L}[f] = \int_0^{\infty} 1 \cdot e^{-st} dt = \left[-\frac{1}{s} e^{-st} \right]_{t=0}^{\infty} = \lim_{t \rightarrow \infty} \frac{-1}{s} e^{-st} + \frac{1}{s} = \frac{1}{s}.$$

Obtain the inverse Laplace transform of the following functions!

- 1 $f(t) = e^{at}.$
- 2 $f(t) = t.$
- 3 $f(t) = \cos(at).$
- 4 $f(t) = e^{t^2}.$

Obtain the Laplace transform of the following functions using the previous exercises and/or Laplace transformation tables!

- 1 $F(s) = \frac{1}{s-1}.$
- 2 $F(s) = \frac{6}{s^4}.$
- 3 $F(s) = \frac{s}{s^2+4}.$

Laplace transform, Properties

Theorem

Both the Laplace transformation and the inverse Laplace transformation are linear.

Exercises

Obtain the Laplace transform of the following functions!

- 1 $f(t) = 3t + e^t.$
- 2 $f(t) = -2 + \cos t.$

Obtain the inverse Laplace transform of the following functions!

- 1 $F(t) = \frac{3}{s-2} + \frac{2}{s^2}.$
- 2 $F(s) = -\frac{12}{s^4}.$

Laplace transform, Properties

Shifting

$$\mathcal{L}[e^{\alpha t}f(t)](s) = \mathcal{L}[f(t)](s - \alpha), \quad s > a + \alpha.$$

Laplace transform of the derivative

$$\mathcal{L}[f'(t)](s) = s\mathcal{L}[f(t)](s) - f(0).$$

$$\mathcal{L}[f''(t)](s) = s^2\mathcal{L}[f(t)](s) - sf(0) - f'(0).$$

$$\mathcal{L}[f^{(n)}(t)](s) = s^n\mathcal{L}[f(t)](s) - s^{n-1}f(0) - s^{n-2}f'(0) - \cdots - sf^{(n-2)}(0) - f^{(n-1)}(0).$$

Laplace transform, Partial fractions

Let $N(s)$ and $D(s)$ are polynomials. Our goal is to write $R(s) = \frac{N(s)}{D(s)}$ into a sum of simpler expressions whose inverse Laplace transform can be recognized from a table of Laplace transformation pairs. This simpler fractions are called **partial fractions**. We can assume without losses that the leading coefficient of $D(s)$ and $N(s)$ is 1.

Steps of the method

Step 1 Find polynomials $r(s)$ and $q(s)$ such that

$$R(s) = \frac{N(s)}{D(s)} = q(s) + \frac{r(s)}{D(s)},$$

where the degree of $r(s)$ is strictly less than the degree of $D(s)$.

Laplace transform, Partial fractions

Steps of the method

Step 2 Write $D(s)$ as a product of factors $(s - b)^n$ or $(s^2 + \alpha s + \beta)$ where α , β and b are real numbers and $(s^2 + \alpha s + \beta)$ has no real zeros.

Step 3 Decompose $\frac{r(s)}{D(s)}$ into a sum of partial fractions in the following way:

- ① For each factor of the form $(s - b)^n$ write

$$\frac{A_1}{(s - b)} + \frac{A_2}{(s - b)^2} + \cdots + \frac{A_n}{(s - b)^n}.$$

- ② For each factor of the form $(s^2 + \alpha s + \beta)$ write

$$\frac{B_1 s + C_1}{s^2 + \alpha s + \beta} + \frac{B_2 s + C_2}{(s^2 + \alpha s + \beta)^2} + \cdots + \frac{B_n s + C_n}{(s^2 + \alpha s + \beta)^n}.$$

Laplace transform, Partial fractions

Exercises

Decompose into partial fractions $R(s)$, where

① $R(s) = \frac{s^3+s^2+2}{s^2-1};$

② $R(s) = \frac{s^2+5s-3}{(s^2+16)(s-2)}.$

Exercises

① Find $\mathcal{L}^{-1} \left[\frac{1}{s(s-3)} \right].$

② Find $\mathcal{L}^{-1} \left[\frac{3s+6}{s^2+3s} \right].$

Laplace transform, solution of ODE

Example

Use Laplace transform to solve the initial value problem

$$y'' + 3y' + 2y = e^{-t}, \quad y(0) = y'(0) = 0.$$

Solution: By the linearity of the Laplace transform we can write:

$$\mathcal{L}[y''] + 3\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[e^{-t}].$$

Using the initial data and the identities for the Laplace transformation of the derivative we have:

$$s^2 Y(s) + 3s Y(s) + 2Y(s) = \frac{1}{s+1}, \quad \text{where } \mathcal{L}[y] = Y(s).$$

Laplace transform, solution of ODE

Rearranging gives

$$Y(s) = \frac{1}{(s+1)(s^2+3s+2)}$$

and

$$y(t) = \mathcal{L}^{-1} \left[\frac{1}{(s+1)(s^2+3s+2)} \right].$$

Using the method of partial fractions we can write

$$\frac{1}{(s+1)(s^2+3s+2)} = \frac{1}{s+2} - \frac{1}{s+1} + \frac{1}{(s+1)^2}.$$

Thus,

$$y(t) = \mathcal{L}^{-1} \left[\frac{1}{s+2} \right] - \mathcal{L}^{-1} \left[\frac{1}{s+1} \right] + \mathcal{L}^{-1} \left[\frac{1}{(s+1)^2} \right] = e^{-2t} - e^{-t} + te^{-t}.$$